

August 14, 2025

Mr. Jordan Kannianen
Deputy Executive Director
ATTN: Oil and Gas Research Program
North Dakota Industrial Commission
State Capitol – 14th floor
600 East Boulevard Avenue, Department 405
Bismark, ND 58505-0840

Dear Mr. Kannianen,

Subject: Proposal Entitled "Williston Basin Resource Optimization: Large-scale Miscible Gas Huff n Puff EOR Pilot in Continental's Dunn County Acreage - Roadrunner/Clover Pad"

Continental Resources is pleased to propose a Large-scale Miscible Gas Huff n Puff pilot aimed at enhancing oil recovery from the Bakken and Three Forks formations. This project involves designing, constructing, and operating facilities to evaluate incremental oil recoveries from miscible gas injection EOR for four strategically selected pilot wells. The pilot's goal is to evaluate and optimize gas cyclic gas injection and, if necessary, test innovative technologies, such as gas-foam cycling, to enhance gas injection conformance.

We firmly believe successful EOR implementation will transform the basin by increasing domestic oil production and extending asset life, thereby enhancing energy independence and security. EOR will boost state revenues through higher tax contributions from increased output, leading to job creation and community development. Continental is excited to collaborate with the Oil and Gas Research program and advance EOR technologies that benefit both the industry and the State of North Dakota. Thank you for considering our proposal.

Please find attached the \$100 application fee. Continental is committed to executing the project as described in this proposal. If you have any questions, please do not hesitate to contact me by telephone at (405) 234-9283 or by email at brad.aman@clr.com.

Sincerely,

Bradley Aman, PE

Vice President, Project Development and Services

Continental Resources, Inc.

Oil and Gas Research Program

North Dakota

Industrial Commission

Application

Project Title: Williston Basin Resource

Optimization: Large-scale Miscible Gas Huff n

Puff EOR Pilot in Continental's Dunn County

Acreage - Roadrunner/Clover Pad

Applicant: Continental Resources

Principal Investigator: Jose Zaghloul, Ph D

Date of Application: August 13th, 2025

Amount of Request: \$8,771,905

Total Amount of Proposed Project:

\$26,889,228

Duration of Project: 42 months

Point of Contact (POC): Jose Zaghloul, Ph D

POC Telephone: 405.774.5739

POC E-Mail Address: jose.zaghloul@clr.com

POC Address: 20 N. Broadway, OKC OK 73102

TABLE OF CONTENTS

1. Abstract	3
2. Project Description	4
3. Standards of Success	10
4. Background / Qualifications	10
5. Management	12
6. Timetable	12
7. Budget	13
8. Confidential Information	14
9. Patents/Rights to Technical Data	14
10. Status of Ongoing Projects	14
Appendix A: Screening Criteria for Huff n Puff Pilots	15
Appendix B: Detailed Scope of Work & Costs	18
Appendix C: Continental's EOR Team Qualifications	23
Appendix D: Letters of Support	26

Additional Required Info:

Transmittal and Commitment Letter

Affidavit of Tax Liability

Statement of status on Other Project Funding

1. ABSTRACT

Objective:

The proposed project objective is to pilot Enhanced Oil Recovery (EOR) in the Bakken and Three Forks formations of the Williston Basin. Its primary goal is to evaluate the potential of Intermittent Gas Injection (IGI), also known as miscible gas Huff n Puff, to enhance oil recovery post-primary development.

Miscible Gas Huff n Puff EOR, proven effective in low permeability conventional reservoirs, is in a stage that still requires further research and development for consistent and successful application in unconventional reservoirs. Huff n Puff EOR involves injecting sufficient miscible gas to increase pressure and dissolve gas in the stimulated reservoir areas surrounding completed wells. The injected gas swells the contacted oil, reduces its viscosity, enhances near-fracture permeability, and significantly improves reservoir deliverability. This technique has the potential to unlock vast remaining resources in the Bakken and Three Forks formations after primary development.

The large-scale pilot proposed herein involves evaluation of intermittent miscible gas injection in four wells: Clover 4-10H, Clover 5-10H, Roadrunner 6-15H, and Roadrunner 7-15H, all located in Dunn County. The project includes the design, construction, and operation of the facilities necessary to assess the incremental oil recoveries for the selected wells. Field and experimental evaluation goals include assessing gas injectivity, containment, injection conformance, efficiency of the miscible gas injection process, uplift, and potential scalability of the outcome. Gas cycling optimization will be a key part of this project. Novel technologies for improving gas injection conformance, such as gas-foam cycling, may also be implemented as determined by Continental, if feasible and necessary.

Expected Results:

Preliminary integrated modeling results suggest an expected incremental oil recovery of ~100,000 barrels of oil per well for a pilot spanning 3 Huff n Puff cycles (~ 20% uplift). The three Huff n Puff cycles are expected to last approximately two years and may yield a total incremental oil recovery of ~ 400,000 barrels between all four wells. The pilot may be extended beyond this timeline if economically viable.

Duration:

We expect to pilot at least three Huff n Puff cycles over a period of up to two years of operation. The project is planned to start March 2026, and it is expected to be executed and operated over a span of 42 months. Project first gas injection is anticipated in 1Q 2027. A large-scale EOR pilot project, as proposed herein, typically requires 3 to 5 years for completion depending on its level of success.

Total Project cost:

The pilot's total estimated cost is \$26.89 million.

Participants:

Continental Resources will be the sole operator participating in this project.

2. PROJECT DESCRIPTION

2.1 Objectives:

A Huff n Puff project involves injecting miscible gas into an existing well to raise near-reservoir pressure (huff) and dissolve gas in the oil. This is followed by a brief soaking period, after which the energized reservoir fluids are produced (puff). Figure 1 illustrates the process.

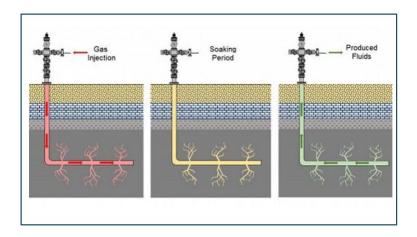


Figure 1. Huff n Puff process description.

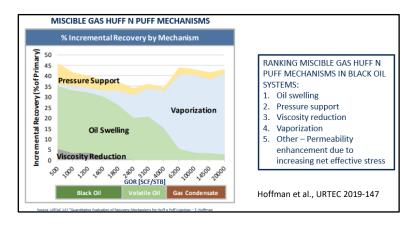


Figure 2. Miscible gas Huff n Puff mechanisms (Hoffman et al, 2019).

The mechanisms enabling miscible gas Huff n Puff in black and volatile oil systems include pressure support, oil swelling, viscosity reduction, near-fracture oil vaporization, and enhanced permeability from decreased net effective stress around fractures. Figure 2 shows the contribution of each mechanism to incremental oil recovery, with oil swelling being the primary driver in black oil systems.

The pilot's primary objective is to evaluate the potential of Intermittent Cyclic Gas Injection Enhanced Oil Recovery (EOR) in unlocking the vast resource remaining in the Bakken and Three Forks formations after primary development. The pilot aims to assess gas injectivity, containment, gas injection conformance, efficiency of the miscible gas injection process, pressure dependent permeability effects, incremental oil recoveries, and potential for scalability.

The wells selected for the pilot include Clover 4-10H, Clover 5-10H, Roadrunner 6-15H, and Roadrunner 7-15H. A detailed summary of our multidisciplinary screening can be found in Appendix A. Continental's screening process is supported by in-depth reservoir characterization and integrated modeling.

Figure 3 provides a visual representation of the proposed pilot location, offering a glimpse of the available EOR footprint in which Continental's working interest exceeds 96%. Figure 3 also highlights the proximity of one of the main field pipelines with surplus capacity, the Williston Basin Interstate (WBI) pipeline, positioned within only 4,000 feet of the referenced pad. This advantageous proximity minimizes the investment required for infrastructure development, optimizing the project's economic viability.

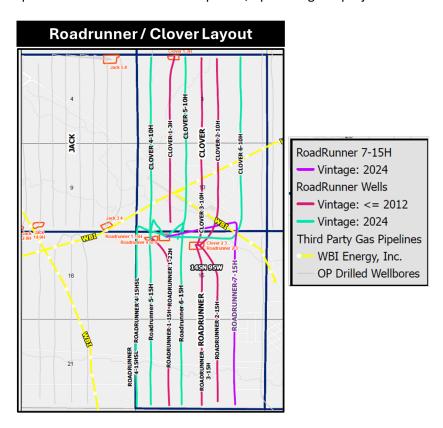


Figure 3: Proposed MB / TF Pilot Location (Roadrunner 4 to 9 Pad).

Figure 4 illustrates the location of the proposed pilot and provides an overview of basic rock and fluid properties for the area. The area offers abundant resources, where EOR holds promising potential for substantial production enhancement. The Middle Bakken and Three Forks formations present an attractive opportunity for cyclic miscible gas injection due to its low primary recovery rates, ranging from 8 to 12%.

Continental Resources plans to inject gas sequentially one well at a time, with huff cycle injection rates of up to 18 MMSCFD for 60 to 90 days, until target pressures are achieved. Injection pressures will be closely monitored to ensure they remain below formation fracture gradient. Following the injection

phase, production cycles are planned to last between 60 and 120 days, with the goal of reaching a minimum BHP of approximately 700 psia during the puffs and recovering a large fraction of the working gas after the first cycle. These initial estimates will guide our operations, and we intend to explore multiple strategies to optimize gas cycling throughout this pilot project.

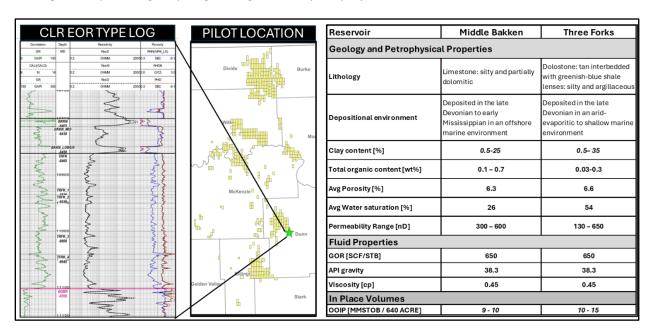


Figure 4. Proposed pilot location and basic rock and fluid properties.

Pilot results will be analyzed and evaluated through extensive data collection and detailed reservoir modeling to enhance gas operation cycling and maximize recovery. Later stages of this project may consider injecting simultaneously into more than one well, however, this would require increasing compression capacity.

2.2 Methodology:

Continental's proposed approach for the pilot consists of two distinct stages. The initial stage will assess gas injectivity, containment, pressure dependent permeability effects, overall efficiency of the miscible gas injection process, and incremental oil recovery. This stage will require injecting gas into four wells; two partially bound wells and two fully bound wells to ensure an in-depth evaluation in a complex development environment at scale. During this first stage, a tracer will be added to the injection gas to evaluate communication between the wells, while also conducting pressure interference analysis using installed downhole pressure gauges.

Later, a second stage will shift its focus to conformance assessment, with the primary objective of evaluating strategies to minimize well-to-well communication, enhance containment, and increase recovery for individual wells in a pad. In this phase of testing, and after the detailed initial gas conformance evaluation, we plan to explore the potential of foam as an agent to improve conformance, recognizing its potential significance in optimizing the EOR process. Gas/Foam cycling is a promising and novel technique

that still requires significant development but may have the potential for unlocking substantial resources in an economic manner.

2.3 Anticipated Results:

A compositional and fully integrated fracture-reservoir model for the proposed pilot is currently being built and calibrated using a state-of-the-art simulator (ResFrac). The model will be utilized for estimating incremental recoveries and further refining operational conditions for achieving the best outcomes in the field. Meanwhile, an existing integrated model for an analogous area is being used to estimate potential project benefit. The results of the analogous model suggest an expected uplift of approximately 100,000 barrels of oil per well over a span of 3 Huff n Puff cycles, which amounts to an incremental recovery of approximately 20% over primary production per well within that timeframe. Total estimated recovery for this project over three Huff n Puff cycles (~ two years) may yield approximately 400,000 incremental oil barrels. The pilot may be extended beyond this timeline if economically viable.

2.4 Facilities:

The project will require well modifications, production facility modifications, and design and construction of injection facilities. Well modifications include wellbore cleanouts, isolation of tubing and casing conduits, and installation of bottom hole pressure gauges. The cost for well modifications is estimated at \$730,000 per well.

Production facilities must be upgraded to (1) accommodate increased gas production during the puff cycles and (2) endure the pressures and temperatures associated with Huff n Puff operations. Upgrades to the production facility include replacing Christmas trees, upsizing flow lines, installing larger separators, and adding line heaters to address the low temperatures anticipated during the puff cycles. The estimated costs for production facility upgrades (from the wellbore to sales lines) are approximately \$1,140,560.

Injection facilities: The scope of the injection facility work includes the following: Pipeline construction from tie-in to compression facility (~ 4,000'), installation of incoming meter and inlet separation, construction of a building for housing compression unit, transportation and installation of a large scale 3606 compressor, installation of fuel and instrument air skids, installation of discharge line and high pressure manifold skids and metering stations for injecting gas into each well. Our initial estimate for the injection facility construction is \$6,721,250.

A large-scale compression unit dedicated to this project will be leased at a rate of $^{\sim}$ \$120,000 per month. Continental estimates requiring the acquisition of 2.8 BCF of injection gas at approximately \$3 per MCF, resulting in total costs of about \$8.4 million. These costs will be considered in-kind contributions covered by Continental Resources.

A detailed description of the project scope of work and the costs associated with its execution can be found in Appendix B.

2.5 Resources:

Continental has a well-established and dedicated team focused on EOR initiatives. The EOR team's responsibilities include screening new potential opportunities, evaluating and ranking options within Continental's portfolio, designing pilot and forecasting performance, executing the pilot design with the support of our multidisciplinary teams, and supporting the operation of our EOR pilots.

Our EOR team has been part of the Facilities and Projects organization since 2017 and includes a select group of professionals and technical experts with more than 140 years of combined experience in development of primary and secondary recovery projects in conventional and unconventional assets, but more specifically with direct experience in the development of our current unconventional reservoir pilots in the Anadarko and Williston Basins.

Our EOR organization is supported by a talented multi-disciplinary team of professionals from all disciplines including, but not limited to, Geology, Geophysics, Petrophysics, Completion, Production, Reservoir, Facilities Engineering, Land and Legal. This multidisciplinary approach ensures a comprehensive and holistic perspective when evaluating, designing, developing, and operating EOR pilots. With its unique wealth of expertise and a dedicated support network, Continental is well-prepared to address the complexities of upcoming EOR pilots and tackle the expansion of projects moving forward.

Our talented team will conduct in-house detailed reservoir characterization (including rock and fluid properties), compositional, and fully integrated fracture-reservoir numerical modeling, while also collecting field and laboratory data for evaluating reservoir responses and improving the robustness of modeling results.

2.6 Techniques to Be Used, Their Availability and Capability:

The Bakken petroleum system represents an attractive opportunity for cyclic miscible injection due to low recovery rates ranging from 8 to 12%. Modeling suggests that the low recovery factors are driven in part by low permeability, pressure dependent permeability effects and proppant pack degradation. We believe cyclic injections could arrest some of the permeability reductions observed during depletion, significantly enhancing oil well performance, and extending well life. Permeability enhancements due to pressure support, along with the other positive benefits associated with EOR, such as reservoir oil swelling, viscosity reduction and vaporization will all have an important positive effect.

Continental has an extensive library of rock and fluid data including PVT datasets and core analysis. Additionally, there have been multiple studies in nearby Bakken pads using fiber, pressure interference testing, time-lapse geochemistry analysis, and microseismic that are being used to constrain modeling efforts.

The selection of this pilot is supported by learnings from an earlier Huff n Puff pilot in the basin. Our previous pilot consisted of two 'parent' wells that were not affected by depletion from offset existing production. Both wells were located on the same pad, with one well landed in the Middle Bakken and

drilled south and the other landed in the Three Forks and drilled north, so they had no impact on each other. Three cycles of Huff n Puff were performed.

The results for this project were a technical success, with the wells demonstrating undisputable incremental oil recovery, however, the magnitude of the uplift was less than expected. A coupled fracture and reservoir simulator (ResFrac) had been used in another basin to successfully match both primary and enhanced oil recovery simultaneously and is being used to successfully predict the oil uplift for each subsequent cycle. Based on this success, a model for this area of the Williston Basin was built to determine the root cause of the limited success for these wells and predict the uplift.

Modeling suggests that the age and size of the original completion, along with flow assurance issues and proppant pack degradation, were some of the main drivers of the limited success. The previous pilot wells were completed in 2012 with relatively small stimulations compared to modern day completions. The modeling suggests that a larger completion, which produces a larger propped area, would have been more suitable. Additionally, the modeling suggests that there may be significant proppant pack degradation due to a variety of reasons such as age resulting in fines production, salt deposition etc., although the exact cause is speculatory. Finally, due to the above stated reasons, the injection capacity of the well was limited due to the limited area open to flow. The shortcomings identified in the previous pilot are addressed in this proposed iteration.

The Clover / Roadrunner wells will be in production for a little more than 30 months at the time of first gas injection and their production then is expected to be approximately 100 bopd, therefore limited degradation of the proppant pack is anticipated in this case. The stimulation designs are also substantially larger than our previous pilot completion designs, providing significantly larger surface areas for connection and enhanced injectivity.

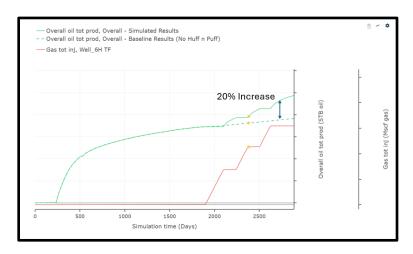


Figure 5. Modeling study estimated incremental oil recovery.

Leveraging the learnings from the model built for our initial Bakken Huff n Puff pilot, a similar model was used to match the primary production for a pad located four miles away from our first pilot, which included wells with modern completions. The model included the Durant 5H (Middle Bakken), Durant 6H1 (Three Forks) and the Durant 7H (Middle Bakken) wells, which are to an extent analogous to

the Roadrunner / Clover wells. Model predictions indicate incremental oil recoveries of approximately 20% or $\sim 100,000$ barrels of oil per well after three cycles (Figure 5).

2.7 Environmental and Economic Impacts while Project is Underway:

The project is not anticipated to have any negative economic impacts on offset operations. Environmentally, we will install a large-scale gas injection compressor that will necessitate effective noise mitigation measures. The design of the building for these compressors in our ongoing Williston Basin pilots has successfully reduced noise to admissible levels without disrupting operations or nearby communities.

2.8 Ultimate Technological and Economic Impacts:

The potential size of the prize for the successful implementation of a large-scale EOR program in the Williston Basin is very large. Internal and industry estimates are that EOR may yield incremental oil recoveries ranging from 3 to 8 billion barrels of oil ^(1,2). Continental's internal screenings indicate that in nearly fully developed Dunn County alone, EOR could be deployed in at least 928 locations, potentially recovering over 150 million barrels of incremental oil. The results of this pilot will be applicable far beyond Dunn County's footprint. EOR will not only deliver substantial incremental oil production but also offers a substantial advantage by effectively mitigating depletion declines and extending the lifespan of existing wells. This technique will drive economic growth through job creation and local investment while promoting environmentally sustainable practices. EOR will allow operators to increase production without the need to drill additional wells.

The successful implementation of EOR will be game changer for the basin, enhancing energy independence and security by increasing domestic oil production. EOR will significantly boost state revenues through higher tax contributions from increased oil output. The economic growth generated from this initiative will lead to more job opportunities and community benefits, fostering local development and infrastructure improvements. Overall, cyclic gas injection EOR will play a pivotal role in strengthening both the local economy and the broader energy landscape.

2.9 Why the Project is Needed:

Oil production from most unconventional reservoir basins in the USA is expected to plateau and start declining within the next five years, so piloting large scale EOR projects is becoming both important and urgent. There is a window of opportunity for the implementation of this type of process. Enhanced Oil recovery will arrest production declines, increase recoveries, and extend the life of Williston Basin resources, all while increasing the values of the produced streams. Those values are crucial for maintaining our country's energy independence, maintaining state and local revenues, and consolidating our energy security. EOR will be one of the tools necessary to maximize the value of the thousands of wells drilled in our unconventional oil basins.

^{1.} Study pegs potential \$9 billion tax impact for CO2 in North Dakota oil wells, North Dakota Monitor, Jan 28th, 2025

^{2.} Unconventional EOR: The Size of the Prize in the Williston Basin, Williston Basin Petroleum Conference, May 14th 2024

3. STANDARDS OF SUCCESS

The ultimate measure of success for this project will be the incremental oil production achieved after the pilot gas cycling process is completed. To achieve an uplift, the wells must demonstrate sufficient injectivity to pressure the reservoir in a reasonable timeframe, and enough containment to properly energize the resources near the fracture region. Injectivity and containment assessments will also be secondary measures of success for the project.

The current project provides an opportunity to understand the scalability of EOR in Continental's Dunn County acreage, which is almost fully developed. The current pad is representative of recent multiwell developments in this area. This will include understanding the miscibility, injectivity and containment of the gas in a multi well, multi bench development.

The successful development of this technology could unlock hundreds of millions of barrels of oil, which represent billions of dollars in additional tax revenue for the state and increased economic activity. The proposed project aims to decisively prove this technology in the Williston Basin, paving the way for optimizing its economic development. Potential advancements needed for progressing this technology include fully integrated reservoir modeling for gas cycling evaluation and conformance optimization technologies like foam or other agents. Additionally, insights gained from this hydrocarbon gas pilot will inform and provide guidance for CO2 applications through the use of ongoing compositional reservoir modeling.

4. BACKGROUND/QUALIFICATIONS

Continental Resources, Inc. ("Continental"), one of the pioneers of the shale revolution, has a longstanding history in North Dakota, with operations dating back to 1990. Continental is one of the largest lease holders in the state and proudly stands as one of North Dakota's largest producers, securing its position as the second-largest producer in the Williston Basin, where its estimated daily production rate reaches ~ 200,000 barrels of oil equivalent a day (BOE/D).

Continental's unconventional EOR program has been in execution since 2017. In the past few years, we have designed and implemented four miscible gas Huff n Puff EOR pilots. Among these are two of the most successful industry-wide Miscible Gas Huff n Puff EOR pilots that are located in the Anadarko Basin. Additionally, Continental initiated Huff n Puff operations in 2023 for two pilots located in the Williston Basin and is currently preparing for the execution of two pilots in the Powder River Basin.

Over a dozen EOR pilots have been implemented in the Williston Basin since 2008 by multiple operators with limited to no success. Many of the previous pilots failed because they were undercapitalized and/or failed to follow a rigorous technical screening process. Continental recently conducted a large-scale pilot, which proved to be an undisputable technical success, and attained some valuable lessons that will be implemented in this iteration in anticipation of a more robust and economic uplift in the Williston Basin.

Following a successful pilot, Continental has the footprint and potential for scaling up one of the largest EOR development programs in the basin, potentially targeting an important portion of thousands

of locations and leading to potential incremental oil recoveries ranging from 3 to 8 billion barrels. Continental's internal screenings indicate that in nearly fully developed Dunn County alone, EOR could be deployed in at least 928 locations, potentially recovering over 150 million barrels of incremental oil. EOR plays a pivotal role in Continental's strategic investment approach, aimed at maximizing oil recovery and extending the lifespan of our valuable assets.

Continental has successfully implemented groundbreaking EOR pilots in unconventional reservoirs that outperformed currently deemed industry success standards in the Eagle Ford Basin. Figure 6 benchmarks Continental's Anadarko pilots in comparison to potential recoveries from established developments in the Eagle Ford shale. This analysis is based on public data reported to the Texas Railroad Commission. The figure below illustrates the remarkable performance of our Anadarko EOR pilot program.

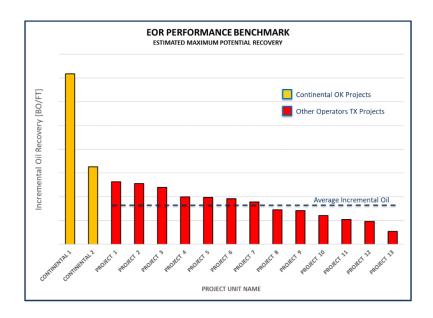


Figure 6. Benchmark of existing EOR projects.

Continental's EOR team has been part of the Project Development and Services organization since 2017 and includes a select group of technical experts and professionals with 140+ years of combined experience in development of enhanced recovery projects. Specifically, our team has had successful experiences in the development of unconventional reservoir pilots in the Anadarko and Williston Basins.

Our EOR organization is supported by a talented multi-disciplinary team of professionals from all disciplines including, but not limited to, Geology, Geophysics, Petrophysics, Completion, Production, Reservoir, Facilities Engineering, Land and Legal. This multidisciplinary approach ensures a comprehensive and holistic perspective when evaluating, designing, developing, and operating EOR pilots. With its unique wealth of expertise and a dedicated support network, Continental is well-prepared to address the complexities of upcoming EOR pilots and tackle the expansion of projects moving forward. More details on the background of key team members can be found in Appendix C.

5. MANAGEMENT

- A manager will be appointed for the project execution. The project manager will be responsible
 for tracking project timelines, costs, and ensuring that critical path activities are achieved without
 delay.
 - The project manager will provide quarterly progress reports, with weekly check ins with the execution team members to facilitate communication and guarantee interdisciplinary alignment.

• Safety:

- The project team will conduct at least one pre-startup safety review of the facility to ensure commissioning has taken place and the equipment is ready to operate.
- Commissioning and startup of the facility will include JW personnel (compressor manufacturer) and associated field teams to verify the equipment is operationally ready.

Injection Start:

- Existing field crews will manage and provide daily production updates via email to the Continental Resources team.
- Additional on-call teams will be available for assistance in operations and maintenance of the compressors.

Continual operations:

- Compressor run-time will be tracked via automation and kept internally at Continental Resources for reference to the project. This will be how Continental Resources keeps track of compressor run time as a percentage (uptime/time).
- o Injection or production rates and pressures will be tracked and reviewed internally daily.
- Downhole pressure gauges will be monitored and reviewed daily by Continental personnel.
- Gas injection tracer will be sampled and monitored to understand the extent of gas migration through the fracture.

6. TIMETABLE

Figure 7 provides an execution timeline for the project. As anticipated, facilities design and construction constitute the critical path for a timely and successful pilot. A pilot of this scale usually takes 3 to 5 years to complete, depending on its success.

Execution start: March 2026

First gas injection start: 1Q 2027

Duration: The project is expected to span approximately 42 months, broken down as follows:

- Month 1-9: Engineering, site preparation, and infrastructure building.
- Month 10-24: Initial gas injection evaluation of injectivity, containment, and uplift.

- **Month 25-36:** Continued gas conformance evaluation. Gas cycling optimization and/or gas-foam cycling implementation if feasible and necessary, as determined by Continental.
- Month 37-42: Laboratory data analysis, field performance evaluation, and reporting.

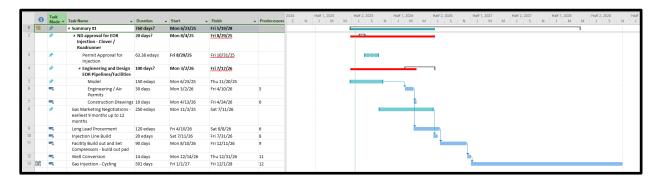


Figure 7. Project proposed timeline.

7. BUDGET

Table 1 summarizes the budget for the program. It offers a breakdown of costs related to facilities, compressors, and pipeline construction.

Our plan involves executing the initial stage of the pilot over a limited period, followed by the immediate commencement of the second stage. The second stage is expected to require approximately one year for refining cyclic gas schedules and gaining a deeper understanding of well conformance and communication, in a manner similar to our previous pilots in other basins.

Table 1. Summary of the expenses related to the project

Project Associated Expense	NDIC Share	Applicant Share	Applicant Share	Other Sponsor's	Applicant Share
		(Cash)	(In Kind)	Share	(In Kind)
CAPEX: Engineering	\$175,687.50	\$175,687.50	\$0.00	\$0.00	\$351,375.00
CAPEX: Construction - Fabricated Items	\$733,000.00	\$733,000.00	\$0.00	\$0.00	\$1,466,000.00
CAPEX: Equipment	\$458,500.00	\$458,500.00	\$0.00	\$0.00	\$917,000.00
CAPEX: Construction - Building	\$808,437.50	\$808,437.50	\$0.00	\$0.00	\$1,616,875.00
CAPEX: Construction - Injection Facility	\$1,185,000.00	\$1,185,000.00	\$0.00	\$0.00	\$2,370,000.00
CAPEX: Construction - Production Facility	\$570,280.00	\$570,280.00	\$0.00	\$0.00	\$1,140,560.00
CAPEX: Construction - Well Cleanouts	\$700,000.00	\$700,000.00	\$0.00	\$0.00	\$1,400,000.00
CAPEX: Construction - Well modifications	\$760,000.00	\$760,000.00	\$0.00	\$0.00	\$1,520,000.00
CAPEX: Construction - Hot Tap & Pipeline	\$875,000.00	\$875,000.00	\$0.00	\$0.00	\$1,750,000.00
OPEX: Tracer analysis	\$256,000.00	\$256,000.00	\$0.00	\$0.00	\$512,000.00
OPEX: Gas purchase	\$0.00	\$0.00	\$8,400,000.00	\$0.00	\$8,400,000
OPEX: Line heaters - Lease	\$360,000.00	\$360,000.00	\$0.00	\$0.00	\$720,000.00
OPEX: Compressors - Fuel gas	\$150,000.00	\$150,000.00	\$0.00	\$0.00	\$300,000.00
OPEX: Booster compressor - Lease	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Main compressor - Lease	\$1,440,000.00	\$1,440,000.00	\$0.00	\$0.00	\$2,880,000.00
OPEX: Chemical Injection Equipment* - Lease	\$0.00	\$250,000.00	\$0.00	\$0.00	\$250,000.00
OPEX: Foaming Agent purchase (Up to 2 cycles)*	\$0.00	\$695,418.00	\$0.00	\$0.00	\$695,418.00
Total Costs	\$8,771,905.00	\$9,717,323.00	\$8,400,000.00	\$0.00	\$26,889,228.00
* Foam will be tested if deemed feasible and necessary by Continental Resources					