

August 14, 2025

Mr. Jordan Kannianen
Deputy Executive Director
ATTN: Oil and Gas Research Program
North Dakota Industrial Commission
State Capitol – 14th floor
600 East Boulevard Avenue, Department 405
Bismark, ND 58505-0840

Subject: Proposal – "A Multi-Well, Multi-Zone Enhanced Oil Recovery Project Utilizing Produced Natural Gas in Williams County – Durant Pad"

Dear Mr. Kannianen,

Continental Resources is pleased to submit a proposal to the Oil and Gas Research Program for a project aimed at advancing cyclic miscible natural gas injection ("huff n puff") technology. This initiative has the potential to increase oil recovery by 30% or more, directly addressing production declines in the Williston Basin and supporting North Dakota's carbon-neutral goals through its applicability to CO₂ injection.

With nearly 40 years of experience in North Dakota's oil and gas industry, Continental is committed to leveraging this emerging technology to inform future infrastructure investments and development strategies. The project will utilize existing natural gas and potential future CO₂ supplies to enhance recovery from current wells, offering significant economic and environmental benefits.

Continental will provide substantial in-kind cost share alongside funding from the U.S. Department of Energy and OGRP. As a demonstration of our commitment, Continental will purchase the injection gas, covering nearly one-third of the project cost. Continental Resources has not been awarded previous funding by the NDIC.

Please find attached the \$100 application fee. Continental is committed to executing the project as described in this proposal. If you have any questions, please do not hesitate to contact me by telephone at (405) 234-9283 or by email at brad.aman@clr.com.

Sincerely,

Bradley Aman, PE

Vice President, Project Development and Services

Continental Resources, Inc.

Oil and Gas Research Program

North Dakota

Industrial Commission

Application

Project Title: Bakken Resource Development

Optimization: A Multi Well, Multi Zone

Enhanced Oil Recovery Project Utilizing

Produced Natural Gas in Williams County -

Durant Pad

Applicant: Continental Resources

Principal Investigator: Dave Ratcliff

Date of Application: 13Aug2025

Amount of Request: \$9,836,905

Total Amount of Proposed Project:

\$29,918,810

Duration of Project: 2 to 4 years

Point of Contact (POC): Dave Ratcliff

POC Telephone: (405) 234-9704

POC E-Mail Address: dave.ratcliff@clr.com

POC Address: 20 N. Broadway, OKC, OK 73102

TABLE OF CONTENTS

1.	Abstract	3
2.	Project Description	4
3.	Standards of Success	13
4.	Background/Qualifications	14
5.	Management	14
6.	Timetable	15
7.	Budget	15
8.	Confidential Information	16
9.	Patents/Rights to Technical Data	16
	Appendix A: Screening Criteria for Huff n Puff Pilots	17
	Appendix B: Detailed Scope of Work: Facilities	20
	Appendix C: Continental's EOR Team Qualifications	25
	Appendix D: Letters of Support	28

Additional Required Info:

Transmittal and Commitment Letter

Affidavit of Tax Liability

Statement of status on Other Project Funding

1: ABSTRACT

Objective:

The pilot's primary objective is to evaluate the potential of Intermittent Gas Injection ("Huff n Puff") Enhanced Oil Recovery (EOR) to unlock the vast resource remaining in the Bakken and Three Forks formation after primary development.

Miscible Gas Huff n Puff EOR, proven effective in low permeability conventional reservoirs, is in a stage that still requires further research and development for consistent and successful application in unconventional reservoirs. Huff n Puff EOR involves injecting sufficient miscible gas to increase pressure and dissolve gas in the stimulated reservoir areas. The injected gas swells the contacted oil, reduces its viscosity, enhances near-fracture permeability, and significantly improves reservoir deliverability. This technique has the potential to unlock vast remaining resources in the Bakken and Three Forks formations after primary development.

This multi well, multi bench pilot proposed herein involves evaluation of intermittent miscible gas injection in up to four wells all located on the Durant Pad of Continental's Williston North acreage in Williams County. The project includes the design, construction, and operation of the facilities necessary to assess the incremental oil recoveries for the selected wells. Field and experimental evaluation goals include assessing gas injectivity, containment, injection conformance, efficiency of the miscible gas injection process, uplift, and potential scalability of the outcome. Gas cycling optimization and understanding the issues involved with scalability will be a key part of this project. Novel technologies for improving gas injection conformance, such as gas-foam cycling, may also be implemented as determined by Continental, if feasible and necessary.

Expected Results:

The expected modelled uplift over the 'baseline' production (e.g. production we would expect if nothing had been done) after three cycles of Huff n Puff will be ~20% increase, resulting in an incremental oil recovery of ~100,000 barrels of oil per well.

Duration:

We anticipate piloting at least three cycles which may last up to two years after injection begins. The overall duration of the project will be subject to the economic viability of subsequent cycles. The pilot duration may be extended if results prove to be successful.

Total Project Cost:

The project is expected to cost \$29.92 million.

Participants:

Continental Resources will be the sole operator.

2. PROJECT DESCRIPTION

2.1 Objectives:

A huff n puff project involves injecting miscible gas into an existing well to raise near-reservoir pressure (huff) and dissolve gas in the oil. This is followed by a brief soaking period, after which the energized reservoir fluids are produced (puff). Figure 1 illustrates the process.

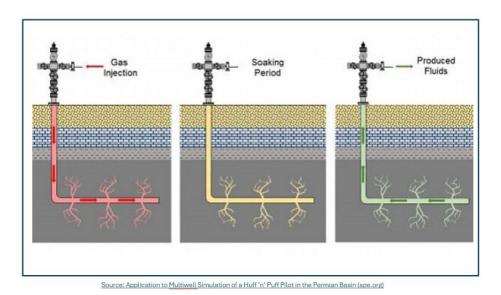


Figure 1: Miscible gas injection at high pressures.

The mechanisms enabling miscible gas huff and puff in black and volatile oil systems include pressure support, oil swelling, viscosity reduction, near-fracture oil vaporization, and enhanced permeability from decreased net effective stress around fractures. Figure 2 shows the contribution of each mechanism to incremental oil recovery, with oil swelling being the primary driver in black oil systems.

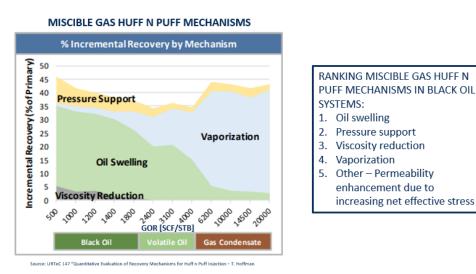


Figure 2: Miscible gas Huff n Puff mechanisms for enhancing oil production.

The objective of this pilot is to optimize injection rates and volumes for a successful intermittent gas injection operation (Huff n Puff) to maximize oil recovery. The focus of this project is to assess the gas injectivity, well connectivity, containment, pressure dependent permeability effects, uplift, the overall efficiency of the miscible gas injection process and the potential for scalability.

The project will consist of 5 wells that will be divided into two groups with wells landed in both the Middle Bakken and the Three Forks formations. A detailed summary of our multidisciplinary screening can be found in Appendix A. The wells are all located on the same pad, but the two groups would alternate injection and production in an asynchronous manner. Furthermore, the injection will be limited to one or two wells, depending on the grouping, to test containment and connectivity between multiple wells to ensure they can be pressured up and produced simultaneously. The ability to achieve containment will have a profound effect on all Middle Bakken and Three Forks development with regards to large scale EOR Huff n Puff implementation. This is due to how closely the wells are originally drilled to maximize the recovery of primary development. Figure 3 shows how the wells were drilled, grouped and their respective groupings. Continental has a working interest of 91.4% in these wells.

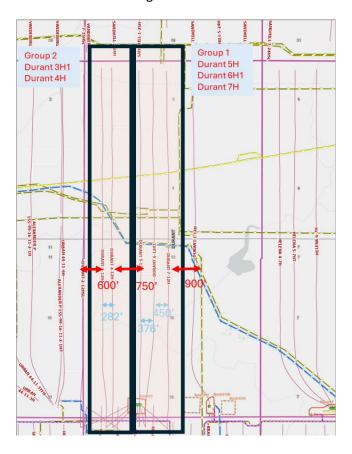


Figure 3: Well layout with the groupings and well spacings defined for each phase of Huff n Puff.

Each injection period is anticipated to require between 2-to-9 months each, followed by a 2-to-9-month production period. The miscible natural gas will be compressed and injected to achieve miscibility pressure at reservoir conditions. The injected gas will then be partially recovered during the production

cycle. The total injected volume required for the first cycle is estimated to be \sim 2-3 Bcf per well grouping, with a smaller amount for subsequent cycles. The injected gas volumes are estimates to reach the desired pressures before flowback, which is the estimated original reservoir pressure of 7,850 psi. The expected oil recovery uplift is \sim 20% over the original baseline values for all wells over a span of 3 cycles.

The same leased compressors will be used for both groupings of wells with a high-pressure line running to each of the two groupings. A new high-pressure pipeline will be built from an existing tap used for a previous Huff n Puff project, also performed by Continental. This metered gas source is located on the Williston Basin Interstate (WBI) pipeline on the Willison-Tioga-Minot system in Williams County, ND and will require approximately 2.1 miles of pipeline to reach the Durant pad as shown in Figure 4. The total throughput of the pipeline is adequate to supply this project. The expected gas requirement for this project is between 12-36 Mmscf/day, depending on the number of compressors being utilized.

Figure 4: Proposed high pressure pipeline from the Durant Pad to an existing WBI tap.

2.2 Methodology:

Continental Resources will convert the Durant 4-12H, Durant 5-12H, Durant 6-12H1 and Durant 7-12H wells located in Williams County to accommodate both production and injection. Converting the wells will entail modifying the existing wellhead for injection, modifying the pad to accommodate a compressor, adding a separator, line heater, compressor building, and flow lines. The wells will then be subject to cyclic intermittent miscible gas injection. The wells will be divided into two groups with both groups including wells landed in both the Middle Bakken and Three Forks.

Although all wellheads are on the same pad, injection would only occur in one well grouping at a time, and the two groups of wells would alternate injection and productions cycles in an asynchronous manner. The respective well groupings are Group 1: Durant 3-12H1/Durant 4-12H and Group 2: Durant 5-

12H/Durant 6-12H1/Durant 7-12H. The miscible gas will be compressed and injected to achieve miscibility pressure at reservoir conditions. During this first stage, a tracer will be added to the injection gas to evaluate communication between the wells, while also conducting pressure interference analysis using installed downhole pressure gauges.

During this stage pressure interference testing will be conducted prior and potentially during the Huff n Puff process to better understand the well-to-well communication. Additionally, a tracer will be added to the injection gas and monitored on offset wells to evaluate communication between the wells.

Later, a second stage will shift its focus to conformance assessment, with the primary objective of evaluating strategies to minimize well-to-well communication, enhance containment (increasing pressure with the least gas injection volume), and increasing incremental recovery for individual wells in a pad. In this phase of testing, and after the detailed initial gas conformance evaluation, we plan to explore the potential of foam as an agent to improve conformance, recognizing its potential significance in optimizing the EOR process. Gas/Foam cycling is a promising and novel technique that still requires significant development but may have the potential for unlocking substantial resources in an economic manner.

2.3 Anticipated Results:

We anticipate increasing oil production for each grouping of wells by 20% utilizing one or more compressors to inject and produce multiple wells. This will result in understanding injectivity of gas, the miscibility of the gas into the oil, containment between the two well groupings, and finally the scalability of the project

2.4 Facilities:

The project will require well modifications, production facility modifications, and design and construction of injection facilities. Well modifications include wellbore cleanouts, isolation of tubing and casing conduits, and installation of bottom hole pressure gauges. The cost for well modifications is estimated at \$380,000 per well.

Production facilities must be upgraded to (1) accommodate increased gas production during the puff cycles and (2) endure the pressures and temperatures associated with Huff n Puff operations. Upgrades to the production facility include replacing Christmas trees, upsizing flow lines, installing larger separators, and adding line heaters to address the low temperatures anticipated during the puff cycles. The estimated costs for production facility upgrades (from the wellbore to sales lines) are approximately \$1,140,560.

Injection facilities: The scope of the injection facility work includes the following: Pipeline construction from tie-in to compression facility (~2.1 miles), installation of incoming meter and inlet separation, construction of a building for housing compression unit, transportation and installation of a large scale 3606 compressor, installation of fuel and instrument air skids, installation of discharge line and high pressure manifold skids and metering stations for injecting gas into each well. Our initial estimate for

the injection facility construction and pipeline construction is \$8,821,250. Additionally, two large-scale compression units dedicated to this project will be leased at a rate of $^{\sim}$ \$120,000 per month.

Finally, Continental estimates require 3.1 BCF of injection gas at approximately \$3 per MCF, resulting in a \$9.3 million expenditure. These costs will be considered in-kind contributions covered by Continental Resources.

A detailed description of the project scope and the costs associated with its execution can be found in Appendix B.

2.5 Resources

Continental Resources, Inc. ("Continental") has a longstanding history in North Dakota, with operations dating back to 1990. In 1995 Continental discovered Cedar Hills, the seventh largest oilfield in the lower 48 states and the first to be developed exclusively through horizontal drilling. In 2004, Continental Resources completed the Robert Heuer NO. 1-17R well in Divide County which was the first commercially successful horizontal Bakken well completed with hydraulic fracturing.

Continental operates approximately 2700+ wells in North Dakota, with an extensive footprint targeting multiple reservoir units and are one of the largest lease holders and producers in the state. Currently, Bakken production is ~200,000 BOE/day. Most of our future development is planned to be centered around the Bakken and Three Forks formations, where we currently estimate adding more than 125 new wells in the next two years. We currently believe EOR will play a pivotal role in improving hydrocarbon recovery in future and existing wells and with plans of designing future completions with this in mind. Continental's internal screening criteria indicate that in Williams County alone, EOR could be deployed in over 770 locations, potentially recovering over 88 million barrels of incremental oil. The results of this pilot will be applicable far beyond Williams County.

Additionally, Continental has conducted four previous pilots in the Williston and Anadarko Basins and is currently getting ready to kick off two additional pilots in the Powder River Basin. We have had a continuously active EOR program since 2017 and are currently operating the two most successful EOR projects in the United States as shown in Figure 8. We would like to continue to apply this knowledge to the Bakken.

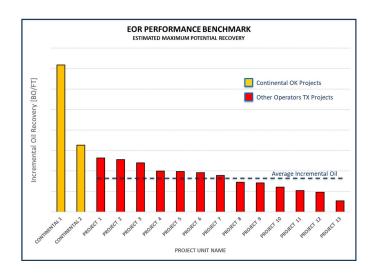


Figure 8: Continental's southern United States EOR project benchmarked against competitors.

Over a dozen EOR pilots have been implemented in the Williston Basin since 2008 by multiple operators with limited to no success. Many of the previous pilots did not succeed because they were undercapitalized and/or did not follow a rigorous technical screening process. Continental recently conducted a large-scale pilot, which proved to be an undisputable technical success, and attained some valuable lessons that will be implemented in this iteration in anticipation of a more robust and economic uplift in the Williston Basin.

Following a successful pilot, Continental has the footprint and potential for scaling up one of the largest EOR development programs in the basin. EOR plays a pivotal role in Continental's strategic investment approach, aimed at maximizing oil recovery and extending the lifespan of our valuable assets.

Continental has a dedicated Enhanced Oil Recovery Team consisting of three Advisor Level Engineers and a VP with extensive background in fluids, modelling and facilities background and over 140 years of oil and gas experience. Our talented team will be conducting all facets of the EOR project development in house. Additionally, we have a dedicated Williston Basin Asset Team committed to growing Continental's EOR's footprint at all levels of the organization. Please see the background/qualifications section for a brief description of team members and their experience.

2.6 Techniques to Be Used, Their Availability and Capability:

The Bakken Petroleum System represents an attractive opportunity for cyclic miscible gas injection due to low recovery rates ranging from 8 to 12%. Modelling suggests that this is in part driven by low permeability, pressure dependent permeability effects and proppant pack degradation. We believe cyclic injections could arrest some of the permeability reductions observed during depletion, significantly enhancing oil well performance, and extending well life. Permeability enhancements due to pressure support along with the other positive benefits associated with EOR such as reservoir oil swelling, viscosity reduction and vaporization will all have an important positive effect.

Continental has an extensive library of rock and fluid data including PVT datasets and core analysis. Additionally, there have been multiple studies in nearby Bakken pads using fiber, pressure interference testing, Geochem analysis and microseismic that are being used to constrain modelling efforts. The target reservoirs for this project will consist of the Middle Bakken and Three Forks formations. Figure 9 shows a type log for the Durant Pad with approximate landing zones labelled and basic reservoir properties presented.

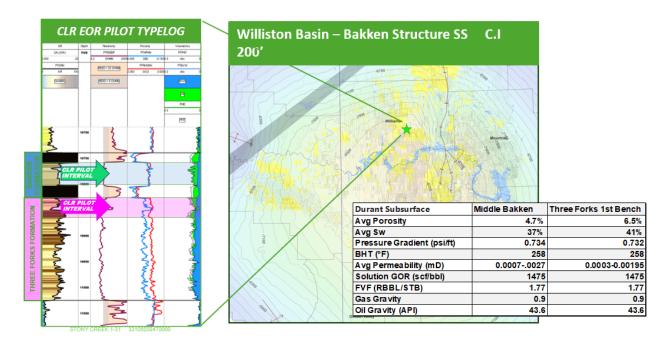


Figure 9: Type log, reservoir characterization and location within Continental's operated field for the Durant Pad wells.

The selection of this pilot is supported by learnings from an earlier Huff n Puff pilot located approximately four miles away. That pilot consisted of two 'parent' wells that were not affected by depletion from offset existing production. Both wells were located on the same pad, with one well landed in the Middle Bakken and drilled south while was the other landed in the Three Forks and drilled north. These wells had no impact on each other. Three cycles of Huff n Puff were performed in each well.

The results for this project were a technical success, with the wells demonstrating undisputable incremental oil recovery, however, the magnitude of the uplift was less than expected. A highly advanced, coupled fracture and reservoir simulator (ResFrac) had been used in another basin to successfully match both primary and enhanced oil recovery simultaneously and is being used to successfully predict the oil uplift for each subsequent cycle. Based on this success, a ResFrac model for this area of the Bakken was built to determine the root cause of the limited success for these wells and predict the uplift for the Durant pad.

Modelling suggests that the age and size of the original completion, along with the amount of gas injected were some of the main drivers of the limited success. These previous pilot wells were completed

in 2012 with relatively small stimulations compared to modern day completions. The modelling suggests that a larger completion, which produces a larger propped area, would have been more suitable. Additionally, the modelling suggests that there may be significant proppant pack degradation due to a variety of reasons such as age resulting in fines production, salt deposition etc., although the exact cause is speculatory. Finally, due to the above stated reasons, the injection capacity of the well was limited due to the limited area open to flow. The limitations identified in the previous pilot are addressed in this proposed iteration.

The Durant pad was chosen in part because the completions are modern, the wells are only 5 years old, and there are two distinct sets of well groupings landed in both the Middle Bakken and Three Forks formations. Additionally, the Durant Pad is close to an existing and available gas transmission source that has been previously used for a Huff n Puff project. There is also sufficient infrastructure in place for significant gas takeaway capacity, which is necessary during the production phase.

Leveraging the learnings from the model built for the previous Bakken Huff n Puff project, a similar model was used to match the primary production of the Durant 5H (Middle Bakken), Durant 6H1 (Three Forks) and the Durant 7H (Middle Bakken) wells. The model's history match to primary production is shown in Figure 10 and adequately predicts hydrocarbon production for all three wells.

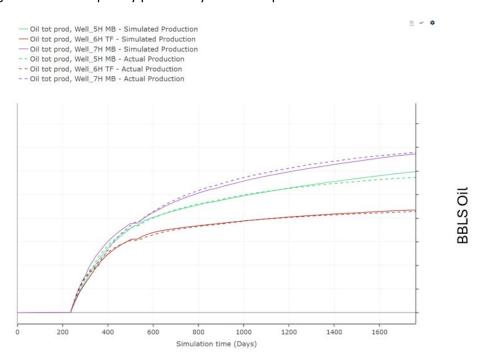


Figure 10: History match results of primary production for the Durant 5H, 6H1 and 7H wells.

Since the model is similar to the previously matched Huff n Puff project, confidence can be gained in making predictions for the incremental uplift for the Durant pad after injection. For this simulation the Durant 5H and the Durant 7H wells are the injector wells. Injection rates are assumed to be 15 Mmscf/day/well and will not exceed the maximum allowable permitted wellhead pressure of 7850 psi, which is less than the formation fracture gradient. The Durant 6H1 well will be shut in during injection

and pressure will be monitored to ensure that downhole connections between all three wells exist. It is estimated that the first injection cycle will require ~3.1 Bscf of gas to reach the maximum allowable wellhead injection pressure. All three wells will be produced for the production (Puff) cycle, and it assumed that at least 50% of the injected gas will be produced before returning the well to injection status. Incremental oil recovery is expected to decrease with each cycle. Figure 11 shows the modelled uplift after three injection cycles. Ultimate uplift projections after several more cycles could approach 50%, as they have in our other Huff n Puff project in another basin.

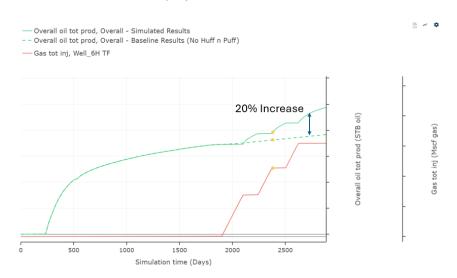


Figure 11: Modelling suggests uplifts after three cycles reaching 20%.

The other two wells in the project, the Durant 3H1 and Durant 4H, will be produced during the Group 1 injection cycle. Pressure will be monitored but, due to the increased well spacing, we do not anticipate communication between the well groupings. Once the initial injection process has been completed on the Durant 5H, 6H1 and 7H wells, the Durant 3H1 and 4H wells will be injected into via the Durant 4H and the Durant 5H, 6H1 and 7H wells will be returned to production.

2.7 Environmental and Economic Impacts while Project is Underway

The project is not anticipated to have any negative economic impacts on offset operations or nearby operators. Environmentally, we will install a large-scale gas injection compressor that will necessitate effective noise mitigation measures. The design of the building for these compressors in our ongoing Williston Basin pilots has successfully reduced noise to admissible levels without disrupting operations or nearby communities.

2.8 Ultimate Technological and Economic Impacts:

The potential size of the prize for the successful implementation of a large-scale EOR program in the Williston Basin is very large. Internal and industry estimates are that EOR may yield incremental oil recoveries ranging from 3 to 8 billion barrels of oil^(1,2). EOR would not only deliver substantial incremental

oil production but also offers a substantial advantage by effectively mitigating depletion declines and extending the lifespan of existing wells. This technique could drive economic growth through job creation and local investment while promoting environmentally sustainable practices (increasing production without the need of drilling additional wells). ¹

The successful implementation of EOR could be game changer for the basin, enhancing energy independence and security by increasing domestic oil production. EOR could significantly boost state revenues through higher tax contributions from increased oil output. The economic growth generated from this initiative would lead to more job opportunities and community benefits, fostering local development and infrastructure improvements. Overall, cyclic gas injection EOR could play a pivotal role in strengthening both the local economy and the broader energy landscape.

2.9 Why the Project is Needed:

Oil production from most unconventional reservoir basins in the USA is expected to plateau and start declining within the next five years, and piloting large scale EOR projects is becoming both important and urgent. There is a window of opportunity for the implementation of this type of process. Enhanced Oil recovery will arrest production declines, increase recoveries, and extend the life of Williston Basin resources, all while increasing the values of the produced streams. Those values are crucial for maintaining our country's energy independence, maintaining state and local revenues, and consolidating our energy security. EOR will be one of the tools necessary to maximize the value of the thousands of wells drilled in our unconventional oil basins.

3. STANDARDS OF SUCCESS

The ultimate success of the project will be the amount of uplift in oil production after all Huff n Puff cycles are completed. Additionally, we want to understand the scalability for future projects, as this will be key in understanding the viability of this technology implemented on a larger scale. This will include understanding the miscibility, injectivity and containment of the gas in a multi well, multi bench development.

The value to the State of North Dakota will be increased revenue, increased production, and increased longevity of the Williston Basin. This will lead to increased employment from construction and maintenance, and potentially the creation of new companies specializing in the implementation of EOR projects. The results of this project will drive oil and gas operators to participate in EOR projects of their own. Additionally, since projects are often constrained by access to adequate gas supply, pipeline creation will increase, with particular emphasis on potential new CO2 pipelines. CO2 would be a slightly better alternative to natural gas but currently the supply is limited due to pipeline constraints and is therefore cost prohibitive. Large scale projects could change this narrative.

^{1.} Study pegs potential \$9 billion tax impact for CO2 in North Dakota oil wells, North Dakota Monitor, Jan 28th, 2025

^{2.} Unconventional EOR: The Size of the Prize in the Williston Basin, Williston Basin Petroleum Conference, May 14th 2024

4. BACKGROUND/QUALIFICATIONS

Continental's EOR team has been part of the Project Development and Services organization since 2017 and includes a select group of technical experts and professionals with 140+ years of combined experience in development of enhanced recovery projects. Specifically, our team has had successful experiences in the development of unconventional reservoir pilots in the Anadarko and Williston Basins.

Our EOR organization is supported by a talented multi-disciplinary team of professionals from all disciplines including, but not limited to, Geology, Geophysics, Petrophysics, Completion, Production, Reservoir, Facilities Engineering, Land and Legal. This multidisciplinary approach ensures a comprehensive and holistic perspective when evaluating, designing, developing, and operating EOR pilots. With its unique wealth of expertise and a dedicated support network, Continental is well-prepared to address the complexities of upcoming EOR pilots and tackle the expansion of projects moving forward. More details on the background of key team members can be found in Appendix C.

5. MANAGEMENT

- A manager will be appointed for the project execution. The project manager will be responsible
 for tracking project timelines, costs, and also making sure the critical path activities are achieved
 without delay.
 - The project manager will provide quarterly progress reports, with weekly check ins with the execution team members to facilitate communication and guarantee interdisciplinary alignment.

Safety

- Continental will conduct one pre-startup safety review of the facility to ensure commissioning has taken place and the equipment is ready to operate.
- Additional commissioning and startup of facility to include JW personnel (compressor manufacturer) and associated field teams to verify equipment is operationally ready.

Injection Start

- Existing field crews will manage and will provide daily production updates via email to the Continental Resources team.
- Additional on-call teams will be available for assistance in operations and maintenance of the compressors.

Continual operations

- Compressor run-time will be tracked via SCADA automation and kept internally at Continental Resources for reference to the project. This will be how Continental Resources keeps track of compressor run time as a percentage (uptime/time)
- Injection volumes and pressures will be tracked and reviewed internally daily
- Downhole pressure gauges will be monitored and reviewed daily by Continental personnel

 Gas injection tracer will be sampled and monitored to understand the extent of gas migration through the fracture

6. TIMETABLE

Figure 12 provides an execution timeline for the project. As anticipated, facilities design and construction constitute the critical path for a timely and successful pilot.

Figure 12: Project proposed timeline.

Execution starts: September 2025

First gas injection starts: 1Q 2026

Duration: The project is expected to span approximately 42 months, broken down as follows:

- Month 1-9: Engineering, site preparation, and infrastructure building
- Month 10-24: Initial gas injection evaluation of injectivity, containment, and uplift.
- Month 25-36: Continued gas conformance evaluation. Gas cycling optimization and/or gas-foam
 cycling implementation if feasible and necessary, as determined by Continental.
- Month 37-42: Laboratory data analysis, field performance evaluation, and reporting

7. BUDGET

Table 1 summarizes the budget for the program. It offers a breakdown of costs related to facilities, compressors, and pipeline construction.

Our plan involves executing the initial stage of the pilot over a limited period, followed by the immediate commencement of the second stage. Stage 2 is expected to require approximately one year for refining cyclic gas schedules and gaining a deeper understanding of well conformance and communication, in a manner similar to our previous pilots in other basins.

Project Associated Expense	NDIC Share	Applicant Share (Cash)	Applicant Share (In Kind)	Other Sponsor's Share	Total Project Cost
CAPEX: Engineering	\$175,687.50	\$175,687.50	\$0.00	\$0.00	\$351,375.00
CAPEX: Construction - Fabricated Items	\$733,000.00	\$733,000.00	\$0.00	\$0.00	\$1,466,000.00
CAPEX: Equipment	\$458,500.00	\$458,500.00	\$0.00	\$0.00	\$917,000.00
CAPEX: Construction - Building	\$808,437.50	\$808,437.50	\$0.00	\$0.00	\$1,616,875.00
CAPEX: Construction - Injection Facility	\$1,185,000.00	\$1,185,000.00	\$0.00	\$0.00	\$2,370,000.00
CAPEX: Construction - Production Facility	\$570,280.00	\$570,280.00	\$0.00	\$0.00	\$1,140,560.00
CAPEX: Construction - Well modifications	\$760,000.00	\$760,000.00	\$0.00	\$0.00	\$1,520,000.00
CAPEX: Construction - Pipeline	\$1,050,000.00	\$1,050,000.00	\$0.00	\$0.00	\$2,100,000.00
OPEX: Tracer analysis	\$256,000.00	\$256,000.00	\$0.00	\$0.00	\$512,000.00
OPEX: Gas purchase	\$0.00	\$0.00	\$9,300,000.00	\$0.00	\$9,300,000.00
OPEX: Line heaters - Lease	\$360,000.00	\$360,000.00	\$0.00	\$0.00	\$720,000.00
OPEX: Compressors - Fuel gas	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Booster compressor - Lease	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Main compressor - Lease	\$2,880,000.00	\$2,880,000.00	\$0.00	\$0.00	\$5,760,000.00
OPEX: Chemical Injection Equipment - Lease	\$0.00	\$250,000.00	\$0.00	\$0.00	\$250,000.00
OPEX: Foaming Agent purchase (Up to 2 cycles)*	\$0.00	\$695,000.00	\$0.00	\$0.00	\$695,000.00
Total Costs	\$9,836,905.00	\$10,781,905.00	\$9,300,000.00	\$0.00	\$29,918,810.00

Table 1: Summary of expenses

The expenses incurred are normal for a pilot of this size. It is the scalability of this project that is fundamental for future projects to occur. Continental knows the importance of making a project like this work economically viable, however additional funding to help cover costs makes a project of this size more palatable for all parties involved.

8. CONFIDENTIAL INFORMATION

No confidential information is presented in this proposal.

9. PATENTS/RIGHTS TO TECHNICAL DATA

No patent rights are reserved for this application.

10. STATUS OF ONGOING PROJECTS (IF ANY)

Continental Resources have not been awarded funding from the NDIC.